Highest vectors of representations (total 8) ; the vectors are over the primal subalgebra. | \(g_{23}+3/4g_{1}\) | \(g_{13}+3/4g_{3}\) | \(g_{5}\) | \(g_{17}\) | \(g_{12}\) | \(g_{25}\) | \(g_{22}\) | \(g_{19}\) |
weight | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{3}\) | \(3\omega_{1}+\omega_{3}\) | \(3\omega_{2}+\omega_{3}\) | \(6\omega_{1}\) | \(3\omega_{1}+3\omega_{2}\) | \(6\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0) | \(\displaystyle V_{2\omega_{3}} \) → (0, 0, 2) | \(\displaystyle V_{3\omega_{1}+\omega_{3}} \) → (3, 0, 1) | \(\displaystyle V_{3\omega_{2}+\omega_{3}} \) → (0, 3, 1) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0, 0) | \(\displaystyle V_{3\omega_{1}+3\omega_{2}} \) → (3, 3, 0) | \(\displaystyle V_{6\omega_{2}} \) → (0, 6, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(3\omega_{1}+\omega_{3}\) \(\omega_{1}+\omega_{3}\) \(3\omega_{1}-\omega_{3}\) \(-\omega_{1}+\omega_{3}\) \(\omega_{1}-\omega_{3}\) \(-3\omega_{1}+\omega_{3}\) \(-\omega_{1}-\omega_{3}\) \(-3\omega_{1}-\omega_{3}\) | \(3\omega_{2}+\omega_{3}\) \(\omega_{2}+\omega_{3}\) \(3\omega_{2}-\omega_{3}\) \(-\omega_{2}+\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(-3\omega_{2}+\omega_{3}\) \(-\omega_{2}-\omega_{3}\) \(-3\omega_{2}-\omega_{3}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(3\omega_{1}+3\omega_{2}\) \(\omega_{1}+3\omega_{2}\) \(3\omega_{1}+\omega_{2}\) \(-\omega_{1}+3\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(3\omega_{1}-3\omega_{2}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(\omega_{1}-3\omega_{2}\) \(-3\omega_{1}-\omega_{2}\) \(-\omega_{1}-3\omega_{2}\) \(-3\omega_{1}-3\omega_{2}\) | \(6\omega_{2}\) \(4\omega_{2}\) \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) \(-4\omega_{2}\) \(-6\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(3\omega_{1}+\omega_{3}\) \(\omega_{1}+\omega_{3}\) \(3\omega_{1}-\omega_{3}\) \(-\omega_{1}+\omega_{3}\) \(\omega_{1}-\omega_{3}\) \(-3\omega_{1}+\omega_{3}\) \(-\omega_{1}-\omega_{3}\) \(-3\omega_{1}-\omega_{3}\) | \(3\omega_{2}+\omega_{3}\) \(\omega_{2}+\omega_{3}\) \(3\omega_{2}-\omega_{3}\) \(-\omega_{2}+\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(-3\omega_{2}+\omega_{3}\) \(-\omega_{2}-\omega_{3}\) \(-3\omega_{2}-\omega_{3}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(3\omega_{1}+3\omega_{2}\) \(\omega_{1}+3\omega_{2}\) \(3\omega_{1}+\omega_{2}\) \(-\omega_{1}+3\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(3\omega_{1}-3\omega_{2}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(\omega_{1}-3\omega_{2}\) \(-3\omega_{1}-\omega_{2}\) \(-\omega_{1}-3\omega_{2}\) \(-3\omega_{1}-3\omega_{2}\) | \(6\omega_{2}\) \(4\omega_{2}\) \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) \(-4\omega_{2}\) \(-6\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{3\omega_{1}+\omega_{3}}\oplus M_{\omega_{1}+\omega_{3}}\oplus M_{3\omega_{1}-\omega_{3}}\oplus M_{-\omega_{1}+\omega_{3}} \oplus M_{\omega_{1}-\omega_{3}}\oplus M_{-3\omega_{1}+\omega_{3}}\oplus M_{-\omega_{1}-\omega_{3}}\oplus M_{-3\omega_{1}-\omega_{3}}\) | \(\displaystyle M_{3\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}+\omega_{3}}\oplus M_{3\omega_{2}-\omega_{3}}\oplus M_{-\omega_{2}+\omega_{3}} \oplus M_{\omega_{2}-\omega_{3}}\oplus M_{-3\omega_{2}+\omega_{3}}\oplus M_{-\omega_{2}-\omega_{3}}\oplus M_{-3\omega_{2}-\omega_{3}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{3\omega_{1}+3\omega_{2}}\oplus M_{\omega_{1}+3\omega_{2}}\oplus M_{3\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+3\omega_{2}} \oplus M_{\omega_{1}+\omega_{2}}\oplus M_{3\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}+3\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-\omega_{2}}\oplus M_{3\omega_{1}-3\omega_{2}}\oplus M_{-3\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}} \oplus M_{\omega_{1}-3\omega_{2}}\oplus M_{-3\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}-3\omega_{2}}\oplus M_{-3\omega_{1}-3\omega_{2}}\) | \(\displaystyle M_{6\omega_{2}}\oplus M_{4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\oplus M_{-4\omega_{2}}\oplus M_{-6\omega_{2}}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{3\omega_{1}+\omega_{3}}\oplus M_{\omega_{1}+\omega_{3}}\oplus M_{3\omega_{1}-\omega_{3}}\oplus M_{-\omega_{1}+\omega_{3}} \oplus M_{\omega_{1}-\omega_{3}}\oplus M_{-3\omega_{1}+\omega_{3}}\oplus M_{-\omega_{1}-\omega_{3}}\oplus M_{-3\omega_{1}-\omega_{3}}\) | \(\displaystyle M_{3\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}+\omega_{3}}\oplus M_{3\omega_{2}-\omega_{3}}\oplus M_{-\omega_{2}+\omega_{3}} \oplus M_{\omega_{2}-\omega_{3}}\oplus M_{-3\omega_{2}+\omega_{3}}\oplus M_{-\omega_{2}-\omega_{3}}\oplus M_{-3\omega_{2}-\omega_{3}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{3\omega_{1}+3\omega_{2}}\oplus M_{\omega_{1}+3\omega_{2}}\oplus M_{3\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+3\omega_{2}} \oplus M_{\omega_{1}+\omega_{2}}\oplus M_{3\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}+3\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-\omega_{2}}\oplus M_{3\omega_{1}-3\omega_{2}}\oplus M_{-3\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}} \oplus M_{\omega_{1}-3\omega_{2}}\oplus M_{-3\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}-3\omega_{2}}\oplus M_{-3\omega_{1}-3\omega_{2}}\) | \(\displaystyle M_{6\omega_{2}}\oplus M_{4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\oplus M_{-4\omega_{2}}\oplus M_{-6\omega_{2}}\) |